Chelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites.

نویسندگان

  • John Z Lu
  • Xinfang Duan
  • Qinglin Wu
  • Kun Lian
چکیده

Wood-polymer composites (WPC) have been extensively used for building products, outdoor decking, automotive, packaging materials, and other applications. WPC is subject to fungal and termite attacks due to wood components enveloped in the thermoplastic matrix. Much effort has been made to improve decay resistance of WPC using zinc borate and other chemicals. In this study, chitosan copper complex (CCC) compounds were used as a potential preservative for wood-HDPE composites. CCC was formulated by reacting chitosan with copper salts under controlled conditions. Inductively coupled plasma (ICP) analytical results indicated that chitosan had high chelating efficiency with copper cations. CCC-treated wood-HDPE composites had a thermal behavior similar to untreated and zinc borate-treated wood-HDPE composites. Incorporation of CCC in wood-HDPE composites did not significantly influence board density of the resultant composites, but had a negative effect on tensile strength at high CCC concentration. In comparison with solid wood and the untreated wood-HDPE composites, 3% CCC-treated wood-HDPE composites significantly improved the decay resistance against white rot fungus Trametes versicolor and brown rot fungus Gloeophyllum trabeum. Especially, CCC-treated wood-HDPE composites were more effectively against the brown rot than the untreated and chitosan-treated wood-HDPE composites. Moreover, CCC-treated wood-HDPE composites performed well as zinc borate-treated wood-HDPE composites on fungal decay resistance. Accordingly, CCC can be effectively used as a preservative for WPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-density Polyethylene-based Composites with Pressure-treated Wood Fibers

High-Density Polyethylene (HDPE)-based composites with alkaline copper quaternary (ACQ)and micronized copper quaternary (MCQ)treated wood fibers were manufactured through injection molding. The mechanical properties, water absorption, and biological resistance properties of the fabricated composites with different coupling treatments were investigated. Composites with ACQand MCQ-treated wood ha...

متن کامل

Surface Degradation of Polymer Matrix Composites Under Different Low Thermal Cycling Conditions

The principal effects of mass degradation on polymer matrix composites (PMCs) are the decay of mechanical properties such as strength, elongation, and resilience. This degradation is a common problem of the PMCs under thermal cycling conditions. In this article, composite degradation was investigated by measurement of total mass loss (TML) using the Taguchi approach. Thermal cycling tests were ...

متن کامل

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

Improved Interfacial Bonding of Pvc/wood-flour Composites by Lignin Amine Modification

Soda lignin was divided into two fractions with different molecular weights by methanol extraction. Lignin amine was synthesized from the low-molecular-weight lignin fraction via Mannich reaction and was used for interfacial modification of poly-(vinylchloride) (PVC)/wood-flour composites. The PVC/wood-flour composites were prepared from surface-treated wood flour and PVC by melt compounding. T...

متن کامل

Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour

The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 99 13  شماره 

صفحات  -

تاریخ انتشار 2008